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SECTION I 

INTRODUCTION 

Off-axis specimens normally are fabricated from 

unidirectional composite materials.  In the specimens, the 

fibers are oriented at an angle to the specimen axis (Figure 

1).*  When loaded uniaxially (a ^0,a =T  =0), the specimen X   y  xy 

develops normal and shear stresses {oi,   02  ^^^   "^12^ with 

respect to the material axes 1 and 2.  Available experi- 

mental data confirms the assumption made in mechanics of 

composite materials that the unidirectional lamina is 

orthotropic, i.e.  the stresses a^ and 02  produce e^ and £2 

strains and the stress T12 generates y j^ 2 strain, respect- 

ively.  This uncoupling of normal and shear responses with 

respect to the material axes presents a possibility of the 

off-axis specimen being used to study the behavior of com- 

posite laminates subjected to biaxial stresses. 

The simplistic and attractive concept of the specimen 

changes when we consider methods of load introduction.  The 

introduction of tensile loads into the specimens requires 

that the specimens with or without tabs be gripped in the 

loading machine.  The use of standard non-rotating grips 

causes the axial stress a    to become non-uniform in the area 
X 

between grips or tabs if provided.  Various techniques have 

been suggested and used with some success to remedy this 

'Figures and Tables are located on pgs 34-J.47. 



undesirable situation.  These techniques are discussed in 

chronological order in the following paragraphs. 

Tsai (References 1 thru 3) used off-axis specimens to 

experimentally verify a strength theory based upon strength 

parameters obtained in simple (single load) tests.  Ideally 

this secimen should have uniform axial stress a  .     However, 

he observed that specimens of uniform cross section tended 

to fail in the region under the grips of the specimen.  To 

ensure failure in the test section, Tsai reduced the 

specimen cross-section in 'dog-bone' fashion.  Lauraitis 

(Reference 4), to correlate the experimental data and the 

analytical results based upon fracture mechanics and Tsai 

criterion, reduced the test section using a continuous large 

radius of curvature but for the same reasons as Tsai. 

Effects of restraints caused by clamping devices were 

investigated by Pagano and Halpin (Reference 5).  Using a 

simple analytical model, they showed that end constraints 

indeed introduced in-plane bending effects (See Figure lb) 

in the specimens.  The presence of in-plane bending stresses 

introduces non-uniformity of normal stresses.  This 

analytical observation was supported by qualitative experi- 

mental data obtained by testing specimens of nylon- 

reinforced rubber.  Moreover, they concluded that long 

off-axis specimens could be used to obtain initial elastic 

moduli but not strength data.  For strength data, specimen 

end-gripping techniques would require modification to 

generate uniform stress states between grips. 



Rizzo (Reference 6) used the finite element method to 

determine the influence of rigid clamping with and without 

end rotation on the distribution of stresses. He observed 

that a marked improvement in the uniformity of stress dis- 

tribution occurred when rotation of end-grips was permitted. 

He further observed that for long specimens (length/width 

ratio exceeding ten) the stress field at the center of the 

specimens was unaffected by the end-clamping arrangements. 

Wu and Thomas (Reference 7) designed a fixture which 

permitted end rotations about axes normal to the specimen 

planform.  The fixture was used to test strain gaged 15 

off-axis specimens with length/width ratios of 5, 4 and 2.5. 

The width was kept constant at 1.5 inches and the length was 

progressively adjusted.  On the basis of data from these 

tests, they concluded that at the low stress level and 

within the aspect ratios (length/width) investigated the use 

of the rotating end fixture resulted in a relatively uniform 

stress state.  Using a 45° off-axis specimen with an aspect 

ratio of 12, Richard  et al (Reference 8) reconfirmed the 

findings of Reference 5. 

To improve uniformity of stress state. Cole and Pipes 

(References  9 and 10) selected the fiber orientation of 

highly tapered end tabs to be the same as the fiber direct- 

ion in the off-axis specimens.  Their selection of the tab 

fiber orientation was not supported by quantitative assess- 

ment.  However, their study yielded an important finding. 

They observed that boron/epoxy laminas retained their 



orthotropic characteristics at all load levels (shear and 

normal stress strain response were uncoupled).  As a result 

of this observation, the use of the off-axis specimen to 

determine shear stress-strain response was suggested 

implicitly in Reference 11 and 12.  The use of a 10  off- 

axis specimen for the same purpose was advocated explicitly 

in References 13 through 15. 

The off-axis specimens (presently used by investigators 

for verification of failure criterion, fracture mechanics 

and fatigue studies, and to determine the shear stress- 

strain response of unidirectional laminates) often 

incorporate the design modifications described in the 

preceding paragraphs.  In spite of these efforts, 

deficiencies in the design of the specimen and the test 

fixture exist.  The present study is aimed at removing some 

of the shortcomings.  Specifically the objective of this 

two-fold effort is to investigate the following: 

a. Necessary changes in the design to improve 

uniformity of stress (cr ) so that the specimen could indeed 

be used to study the effects of biaxial stress states upon 

composite laminates. 

b. Validity of the off-axis specimen for deter- 

mining the shear stress-strain ixi2'   Yi2^ response of 

undirectional composite laminates.  This requires that other 

stress components must vanish, which is not possible in the 

off-axis specimen.  Therefore, the next best possible thing 

to do is to maximize the shear effects relative to the 
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normal effects caused by the presence of normal stresses oi 

and 0 2. 

The improved specimen design is described in Section II. 

Experimental and analytical data verifying the improvements 

are included in Section III.  Finally, the evaluation of the 

results and the conclusions drawn therefrom are presented in 

Section IV. 



■     '   '^■-'[   •■ SECTION II    .  ■ ; - .    ' ' ; ■ 

SPECIMEN DESIGN 

An axially loaded (a * Q, a =-z    =0) off-axis specimen ^ X   ' y  xy '^ 

develops a biaxial stress state (a^f 02'    TI2^ relative to 

the material axes such that normal stresses ( a^^ 02^^^^ 

functions only of normal strains (e^f £2^ ^"^"^ shear stress 

(TI2^ i^ ^ function only of shear strain {YI2^ (References 9 

and 10).  This behavior of the specimen suggests that the 

specimen can be used for the following purposes: 

a. Determination of the shear stress-strain responses 

of unidirectional composite laminates. 

b. Limited verification of failure criteria (Figure 2). 

c. Fatigue and fracture mechanics studies under biaxial 

stress states. 

The stress state in the test area of the specimen must 

be uniform for any of these three purposes.  This condition 

is the basic requirement for achieving meaningful results. 

The means for improving stress uniformity and the shear 

stress-strain response determination are described in the 

following paragraphs. 

The study of the off-axis specimen reported herein in- 

cludes the following: 

a. Point-stress state 

b. Shear stress-strain response based upon 

(i).  Linear material behavior 

(ii).  Nonlinear material behavior 



c.  Effects of end constraints upon the stress distri- 

bution and the means to achieve uniformity of the stress 

state. 

1.  Specimen Point Stress State 

A biaxial stress state exists along the material axes 1, 

2 of a uniaxially loaded (a #0,0 =T  =0) flat unidirectional X    y  xy 

composite laminate specimen when the load axes X, Y do not 

coincide with the material axes. If the angle between the 

only load (a ) and material axis 1 is o, the resulting 

stresses and strains referred to the material axes 1 and 2 

are given by 

2 
a 1 m  a (1) 

2 
02   =  n   cr (2) 

Ti2   = ronoj^ 

where 

a = normal stress in x-direction 

ai,      ci        = normal stress and strain in the fiber 

direction (1-axis) 

(3) 

£2   ~   -y i2Cfl/^l l'^cr2/E22 (^^ 

^12"=   ^12/^12 (^^ 

U2i~   ^'12^22/^11 ^^^ 



021       &2      ~  normal stress and strain in the direction 

transverse to the fibers (2-axis) 

Ti2f Yi2  ~ in-plane shear stress and strain • 

E ilf E 22  ~ Young's moduli in 1 and 2 directions 

G 12  ~ shear modulus 

y 1 2  ~ major Poisson's ratio 

m  = cos a 

n   = sin a 

a  = angle between the 1 and x directions 

(positive when counterclockwise going 

from 1 to x) 

2.  Specimen Optimization for Shear 

In the off-axis specimen, though uncoupled, both 

normal and shear stresses and strains exist relative to the 

material axes.  For the off-axis specimen to perform as a 

shear specimen, the shear response as compared to the normal 

responses should be a maximum.  In the following paragraphs, 

we determine the off-axis angle which (a) maximizes the 

shear response to failure and (b) minimizes the transverse 

strain.  Since the shear stress-strain response of 

unidirectional composite laminates is in general nonlinear, 

the off-axis angles maximizing the shear response for linear 

and nonlinear material behaviors are likely to be different. 

We show that this is so and the off-axis angle maximizing 

the shear response is not a fixed entity. 



2.1  Maximizing Shear Response-Linear Material 

The failure of the off-axis specimen subjected to the 

biaxial stress state (Equations 1 to 3) is governed by the 

following expression that incorporates three criteria, 

Norris, Tsai and Chamis (Reference 16): 

2 2 _ 2 
(Oi   /Fii)      +(02   /F22)      -   K(aia2   /FIIF22) + (T    12/^66)       >   ^    (8) 

where 

Fji  = strength in the fiber direction 

F22  = strength in the direction transverse 

to the fibers 

Fgg = shear strength 

K   =1 for Norris criterion 

= F22 /F11 for Tsai criterion 

= K22 for Chamis criterion, is a combined 

strength coefficient to be chosen such that 

the predicted and experimental results are 

in good agreement 

Fji and F22 can assume positive or negative values depending 

upon whether a^ and 02     are  tensile or compressive.  Upon 

using a^, 02  and T12 fi^om Equations 1 to 3, Equation 8 can 

be written as 

2        hi 1+2-22 111 
o^     >   l/(m /F11+ n /F22- Km n /F11F22+ m n /Fgg)    (9) 

2 
In Equation 8, the expression (x^j /Fgg)  represents the 

contribution, X^, made by the shear stress towards failure. 



It can be written as      - \  ' * v-" 

Substituting Equation 9 for the case of equality into 

Equation 11, we get 

2   2     2      2   2     2 • 
^s = l/CFee/f'llCOt a + Fgg/Fgstan a - 

KFgg / F^^F22+ 1) (12) 

X  attains a maximum value, when s 

dXg/da =0 (13) 

On simplification. Equation 13 reduces to 

tan  a'= /F22/^ll d'*) 

where a' is the off-axis angle for which X  becomes maximum. ^ s 

Equation 14  indicates that the off-axis angle, a'/ 

maximizing the shear contribution to failure is a function 

of the normal strength parameters only. The coupling and 

shear strength terms of the interacting type failure 

criterion do not affect the off-axis angle a'. 

2.2  Minimizing Transverse Strain-Linear Material 

Using Equations 1 and 2, the transverse strain ^2 

in Equation 5 can be written as  ;  ' *    ■->'■'    '-'  '    • 

2 2 
£2  =[-Ui2COS a/^11 "^ ^1" a/^22] ^x ^"""^^ 

10 



The transverse strain e, vanishes for 

2 
tan a = y^g ^22/^11 (16) 

and a assumes a spvicific optimum value a".  Thus 
2 
~" - -^2 1 tan a" = jijl (17) 

tan a" = /pjl (18) 

Off-axis angles a' and a" computed for various material 

systems are shown in Table 1.  It is evident from the table 

that a' and a" for the same material system are not the 

same.  This means that when fibers are oriented to maximize 

shear contribution to failure, the specimen is not 

simultaneously free of transverse strain.  When fibers are 

oriented at a" to eliminate transverse strain, shear 

contribution to failure is not maximum.  Hence, for linear 

material there is no fiber orientation for which both 

conditions (maximum shear contribution to failure and zero 

£2) ai^e satisfied at the same time. 

2.3  Maximizing Shear Response-Nonlinear Material 

In this paragraph the effect of nonlinearity of 

material behavior upon the off-axis angle maximizing the 

shear response is studied.  The concepts developed in 

References 11 and 12 and incorporated in the computer 

program "NOLAST" (Reference 17) are used.  These concepts 

are described in paragraphs 2.3.1 thru 2.3.5. 
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2.3.1 Constitutive Releationship for Nonlinear 

Elastic Material 

de^ = S^.(e. )claj (i, j = 1,2,6) (19) 

where d e. , da. and S. . ( e. ) are the increments of strain, and 

stress components and elements of the compliance matrix, 

respectively.  The compliances S..( e.) depend upon current 

strain level and are obtained from the basic stress-strain 

data of the unidirectional lamina represented analytically 

by piecewise cubic spline interpolation functions. 

2.3.2 Laminate Strain Increments 

{de°} = [A]"^ {dN} (20) 

where '■    r  " i      . .  • {de } = laminate strain increments 
, ,- 1 
[A]  = laminate compliance matrix 

{dN } = increments of stress resultants 

In the application of Equation 20, a predictor-corrector and 

iterative procedure is used to improve the accuracy of the 

laminate stress-strain increments. In this technique, the 

r -1- 1 matrix [A]   is computed using elastic constants which 

correspond to the end of the previous load increment and, 

hence, the strain increment.  Then a new increment of load 

{dN} is applied and the resulting strain increment {de°} is 

calcuated using the matrix [A]  .  This strain increment is 

used to determine a new set of average elastic constants and 

a new matrix [A]   is computed.  The above cycle is repeated 

by applying the current load increment and a new set of 

12 



strain increments {deO} through the use of the updated 

r 1-^ matrix [AJ   is calculated.  This procedure is continued 

until the ratio of change of the strain increment to the 

strain increment in two consecutive cycles is less than 

0.001. 

2.3.3  Equivalent Strain Increments 

In the procedure described in paragraph 2.3.2 

the lamina biaxial strains (ej and eg ) are modified before 

being used to determine the elastic constants from the 

experimental stress-strain curves.  This modification is 

required to allow for the simultaneous existence of longi- 

tudinal and transverse stresses in the lamina whereas in the 

experimental data only one component of stress is present. 

The effects of the existence of transverse or longitudinal 

stresses are taken into account by assuming that simple 

equivalent strain increments can be computed from 

^"l|Equivalent = ^^i /^^-^12^) (21) 

^"2! Equivalent = ^^2 /d-Pzi/B)        (22) 

where y^^g -  major Poisson's ratio and 

B = da2/dcr2 

2.3.4  Failure Criterion 

The incremental loading technique described 

in paragraph 2.3.2 is a finite process.  It culminates in 

failure of the lamina.  To determine the failure state, 

various failure criteria (Reference 16) have been proposed. 

13 



These criteria assume linear material behavior and are not 

applicable to materials exhibiting nonlinear behavior.  For 

this reason, the failure criterion developed in References 

11 and 12 for nonlinear material behavior was used.  This 

criterion is a function of both stress and strain states. 

For plane stress conditions, the criterion is written as: 

mi I (W. / W. )"'^ = 1 (23) 

1,2,6 

where        W. = area under the simple stress-strain curve 

up to the strain due to the applied load 

W. = area under the simple stress-strain curve 

to failure due to uniaxial lamina loading 

m. = parameter to be determined by biaxial 

experimental data 

Since biaxial data are not available for fixing the values 

of m., it is assumed that m^ = raj = mg = 1, and it reduces 

the criterion to a simple strain energy relationship.  For 

this condition the criterion corresponds to the following 

equation: 

X^ + X^ = 1 (24) 

where X^ = W^ / W^ + Wg / W 2 (25) 

' ■    X = wg / Wg : 

where  :      X  = normal stress contribution to failure n 
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Xg = shear stress contribution to failure 

2.3.5  Contribution of Shear to Degradation 

Process of Off-Axis Specimen 

The shear contribution to failure of the unidirectional 

laminates from Equations (25) is 

Xg = Wg / Wg (26) 

Using the "NOLAST" Program (Reference 17), values of X  were 

computed for different off-axis angles for AS/3501-5 

graphite-epoxy.  A plot of the analytical data is shown in 

Figure 3.  The nonlinear material peak value of X  = 88.0% 

occurs when the off-axis angle is 13.0° which is greater 

than the a' = 11  23' computed using linear analysis (Table 

I) for the same AS/3501-5 graphite- epoxy material system. 

The data based upon the nonlinear analysis for the boron- 

epoxy material system indicate that the off-axis angle for 

the boron-epoxy material systems is 15.0° (Reference 11 and 

12) with the maximum X  = 94.14%.  The corresponding 

off-axis angle using linear analysis is 11° 40' (Table I). 

Thus, for AS/3501-5 graphite epoxy and the boron-epoxy 

material systems, the more realistic nonlinear material 

behavior analysis yields higher off-axis angles than the 

simpler, but less realistic linear material behavior 

analysis.  Moreover, the value of the angle that maximizes 

shear contribution to failure is not the same for different 

material systems in either linear or nonlirxear analyses. 
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3.0  Specimen Optimization for Uniform Stress 

In the discussion of paragraph 2 of this Section, 

it was tacitly assumed that the specimens examined were 

subjected to a uniform a    applied at the specimen ends, ie., 

the means of introduction of loads in the specimen did not 

generate any stresses other than a    uniformly across the 

width as shown in Figure la.  However, for realistic load 

introduction, the specimens usually are tabbed and tabs are 

gripped in the gripping device of the test machine.  This 

constrains the specimen ends from natural rotation and 

causes the specimen to deform to the shape shown exaggerated 

in Figure lb, thereby creating a non-uniform stress state in 

the test section.  Analyses of off-axis specimens are 

conducted on the basis that uniform stress states exist.  In 

order to verify the theoretical results, it is imperative to 

design the experiments to reproduce the analytical 

conditions as closely as possible.  For this reason the 

uniformity of state becomes important.  Various techniques 

devised to alleviate the undesired effects end constraints 

are described below. 

3.1  Improved Grips . 

The use of standard grips prevents rotation of the 

ends of the off-axis specimen.  Such constraint causes 

non-uniform stresses in the test section.  If the ends are 

permitted to rotate, considerable improvement in the 

uniformity of the stress state can be achieved (Reference 6 

and 7).  A grip design with a provision for rotation of 

■ • 16 ■,■.,;■ 



specimen ends is essential to reduce the effects of the end 

constraints. 

3.2 Aspect Ratio (Length/Width Ratio) 

The aspect ratio (length/width) is an important 

factor in designing the specimen if determination of the 

longitudinal shear modulus of the specimens' fibrous 

composite material is the primary objective.  The effect of 

the non-rotating grips on the longitudinal shear modulus of 

specimen material is  minimal if the aspect ratio of the 

specimen exceeds 12.0 (Reference 6).  Compliance with the 

aspect ratio requirements assures the uniformity of the 

stress state only in the central region of the specimen. 

Everywhere else the stress is far from uniform.  For this 

reason the aspect ratio is not important when it is desired 

to determine the strength of the off-axis specimen. 

3.3 Improved Tabs 

Tabs, if required to introduce loads into the 

specimen through shear irrespective of the grip rotation, 

are fabricated from crossplied glass-epoxy.  The suitability 

of the tab design to transfer loads from the grips of the 

machine to the specimen with minimal contraints will depend 

upon the following factors (Figure 4): 

(i)  Orientation g  of the fibers of the tabs 

with respect to the specimen axis.     • 

(ii)  Inclination tan X = 6/B (tan X =6 when B 

= 1) of the tab ends where B is width of the specimen. 
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A parametric study was conducted to investigate the 

effects of 3  and 6  on the state of stress in the 

specimens.  It consisted of finite element analyses with 

hinged boundary conditions and linear material behavior. 

The finite element models are shown in Figures 5 and 6.  For 

each off-axis angle a , combinations of 3 and 5 were 

determined that minimized the variation o  in the test 

section between tabs.  The detailed results of the study are 

tabulated in Table II for a = 4°,6°,8° and 10° and in Table 

III for 80° >. « 2. 12° while the maximum stress variations 

for a between 4° and 80° are summarized in Table IV. 

Examination of the tables and Figure 7, indicates that if 3 

=6=0, very large stress differences exist and their 

magnitude depends upon the off-axis angle a.  The maximum 

difference occurs for 45 .  If recommendations of References 

9 and 10 are followed, the fiber orientation in both the 

composite and the tabs are matched (i.e., 3 = a, and 6=0) 

some relief in the severity of the stress differences is 

obtained.  However by optimizing 3 with 6=0, the stress 

differences are further reduced except for a = 35  through 

65°, for which further improvements over 3 = a and 5=0 

case are almost negligible.  The maximum reduction in the 

stress differences is achieved by varying 3 and 6.  As a 

result the stress field becomes practically uniform. 

To verify the analytical results presented here, tests 

for two groups a, 3, 6  combinations were conducted: 

18 



(a) 0 = (V and 6=0; (b) optimized g and 6.  Results of 

these experiments are discussed in Section III. ■ 
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SECTION III 

EXPERIMENTAL AND ANALYTICAL DATA       '  " 

The investigation reported herein consisted of two parts 

experimental and analytical (nonlinear material behavior). 

These two parts are described in the following paragraphs. 

1.  Experimental Part 

1.1 Material System 

The material system used in the study was 

AS/3501-5, graphite/epoxy, supplied by Hercules 

Incorporated in the form of a 12.0 inch wide prepreg tape. 

1.2 Cure Cycle 

The prepreg material was used to fabricate 

three 16-ply panels:  two 3.5 feet by 5.0 feet and one plate 

9.0 inches by 7.0 inches.  Fibers in the large panels were 

aligned parallel the short direction, while a (j:45^)  layup 

was used in the small panel.  All three panels were cured at 

the same time in accordance with the following cure cycle: 

a. Apply full vacuum pressure (8-10 psi). 

b. Heat to 225°F at 5°F to 8^F per minute. 

c. Upon reaching 225°F, apply sufficient 

pressure to reach a total of 85 psi and continue heating to 

350°F. 

d.  Hold for 60 minutes at 350°F and 85 psi 

pressure (autoclave plus full vacuum). 

e.  Cool to 150°F or less under pressure. 
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1.3  Specimens (basic properties and off-axis) 

The large panels were used to cut various 

subpanels for the intended off-axis angles as shown in 

Figures 8 and 9.  All the subpanels were subjected to 

ultrasonic through-transmission C-scan and X-ray inspection 

for flaws before being cut into test specimens.  The 

inspection did not reveal significant defects.  In addition, 

the resin content and densities of the panels were 

determined using ASTM Standards D792 and D2734 and they are 

tabulated in Table V.  The specimens fabricated from the 

subpanels and the (+45.)  panel were of two types:  those 
—  4 s 

for determining basic panel properties and those for 

validating the analytical results of off-axis specimen 

studies. 

1.3.1  Specimens for Basic Properties 

The specimens for basic properties 

determination were cut from (Oig)r ^^^16^ ^^^   ^i^^4)s P^"^-^*^ 

and had the dimensions shown in Figures 10 and 11 except 

that (O-ic) tensile specimens were 0.75 inches wide.  This 

reduction in width was mandated by the load capacity of the 

test machine used in the testing part of the program.  In 

addition, specimens of (0/90) glass epoxy tabbing material 

with dimensions shown in Figure 10 were fabricated.  In the 

three types of these specimens fibers were aligned at 0, 90 

and ±45 respectively to the loading axes. 
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1.3.2  Off-axis Specimens 

Off-axis specimens were cut from the 

sub-panels marked 4°, 6°, 8°, 10°, 12°, 14°, 16°, 20°, 30°, 

40°, 45°, 50°, 60°, 70°, and 80° .  Dimensions of these 

specimens are shown in Figure 10.  For each of the off-axis 

angles, specimens with either square or inclined tabs were 

machined.  They were designated as XXOAA or XXOAB.  Where XX 

represented the off-axis angle, OAA - specimens with square 

tabs and OAB - inclined tabs. 

1.4 Instrumentation 

All specimens were instrumented with two 

3-element strain gage rosettes, one on each face at the 

center of the test section of the specimen. 

1.5 Testing 

An Instron Test Machine, Floor Model TT-1115, 

was used to test all specimens at ambient environments 

(RTA).  The crosshead speed for compression specimens was 

0.05 inches per minute while it was 0.2 inches per minute 

for tensile specimens. 

Tension tests for determination of basic 

properties of laminates (graphite/epoxy and glass/epoxy) 

with 0°, 90° and +45° layups were conducted using standard 

grips.  For basic compression properties tests of 0  and 90 

laminates, a test fixture (Figure 12) designed by Northrop 

Corporation and modified locally (R.L. Rolfes, AFWAL/FIBCC) 

was used. 
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I   - All the off-axis specimens were loaded in 

tension.  Some of the square tab specimens were tested in 

standard fixed grips.  For the rest of the square tab and 

all inclined tab specimen, the test fixture had hinged grips 

as shown in Figure 13.  The designation for the former group 

was XXOAA while for the latter - XXOAAH and XXOABH. 

1.6  Data 

For each of the basic mechanical properties, 

two sets of stress-strain data from the two strain gages 

located on opposite faces of the specimen were obtained.  To 

determine the average data, piecewise cubic spline inter- 

polation functions were employed to represent each set of 

data.  The stresses at prescribed strain values were 

determined.  The results were then averaged to determine 

stress-strain curves for both the graphite/epoxy and 

glass/epoxy material systems.  The averaged data are 

tabulated in Table VI and VII, and engineering elastic 

constants are presented in Table VIII. 

Ultimate stresses and strains for all off-axis 

specimens (test series XXOAA, XXOAAH and XXOABH) are 

presented in Table IX.  Experimental and analytical 

stress-strain plots for off-axis specimens obtained in this 

study are shown in Figures 14 thru 100.  In each of the 

figures, experimental data for the test specimem are plotted 

individually using different symbols.  Test sequence numbers 

are given for each of the symbols in the plots. 
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2.0  Analytical Part 

The basic property data for graphite-epoxy and 

glass-epoxy material systems and the nonlinear analysis were 

used to determine the cumulative stress strain response of 

the off-axis specimens modelled as shown in Figures 5 and 6. 

In determining the cumulative responses, appropriate 

boundary conditions were incorporated in the finite element 

analyses.  The analytical stress-strain curves corresponding 

to the locations of strain gages were obtained.  These 

curves are plotted in Figures 14 through 100 using solid and 

dashed lines.  The data shown in these figures are compared 

and evaluated in Section IV. 

■•i: 
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SECTION IV 

EVALUATION OF DATA AND CONCLUSIONS 

On the basis of data generated in this study, some 

observations can be made.  They are arranged in the 

following order: 

a. Use of off-axis specimen as a shear specimen. 

b. Design of off-axis specimen to improve 

uniformity of stress a  . 

c. Analytical-Experimental correlation 

1.  Use of Off-axis Specimen as a Shear Specimen 

For linear materials, the optimum angle a' that 

maximizes shear contribution to failure was found to be 

given by Equation 14.  In addition to the maximum shear 

contribution hypothesis, the optimum angle a" corresponding 

to the minimum transverse strain condition was determined. 

This yielded Equation 18.  The resulting data in Table I 

indicate that maximum shear and minimum transverse strain 

cannot be obtained simultaneously, and that the optimum 

off-axis angle a* is a material-dependent quantity that is 

different for different material systems. 

In the case of nonlinear materials, an equation similar 

to Equation 14 could not be derived.  However, using the 

nonlinear material properties (Table VI) a nonlinear point 

stress analysis computer program "NOLAST" (References 17) 

was employed to compute shear contributions to failure Xs 

(Equation 26) for off-axis angles 0° to 90*^ in AS/3501-5 
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material system.  The results  of this analyis are shown in 

Figure 3.  X  reaches the peak value of 88.0%, at the 

off-axis angle of 13*^.  The values of X  drop sharply for 

off-axis angles less than 11° and for those exceeding 14°. 

In the range of 11  thru 14 , the values of X  are 87.5%, 

87.78%, 88.0% and 87.6% (averaging to 87.72%) for 11°, 12°, 

13  and 14  respectively. 

These results indicate that the optimum off-axis angle 

is not a fixed entity.  It changes with material and 

material behavior.  In addition, the off-axis shear response 

does not cover the entire range of shear behavior of 

unidirectional laminates.  For the AS/3501-5 material system 

used in this study, the off-axis shear response, X , was 

88.0% of the area under the pure shear stress strain plot 

obtained by testing (+^5),  coupons while the normal stress 
T s 

contributions X  (Equation 25) accounted for the remaining 

12% towards failure.  On the basis of findings in this 

study, it is difficult to justify a recommendation of a 

fixed value of fiber orientation ( a ) in an off-axis 

specimen for determining the shear response of unidirect- 

ional laminates for different material systems. 

2•  Design of Off-Axis Specimen to Improve Uniformity of 

Stress a 

Tabbing the specimens and the use of standard grips 

constrains end rotations of the specimens.  These 

constraints cause in-plane bending stresses (Reference 5). 

Resulting deformations are illustrated in Figure 1(b).  To 
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reduce the effects of end constraints, various techniques 

including the one evolved in this study are discussed below. 

2.1  Rotation Grips 

Finite element analyses based upon linear material 

properties of off-axis specimens were conducted in Reference 

6 to assess the effects of different specimen end boundary 

conditions on uniformity of stress distribution.   Those 

analyses indicated that considerable improvement in stress 

distribution uniformity in the test section of the specimen 

could be achieved by using a hinged fixture to transfer 

loads from the loading machine to the specimen even with 

non-optimum tab fiber direction and square tabs.  This 

assessment was later substantiated experimentally (Reference 

7).  On the basis of those results and the analyses 

conducted in this study, the use of hinged grips to load the 

specimen appears imperative. 

2.2  Tab Design with Hinged Grips and Linear Material 

A parametric study of the tab design was conducted 

for AS/3501-5 off-axis specimens with glass epoxy tabs. 

Finite element models of Figures 5 and 6, material 

properties tabulated in Tables VI thru VIII and hinged 

boundary conditions were used.  The parameters were a and g, 

the fiber orientation in the specimens, tab material, and 

S   = tan X  where x is the inclination of tabs on the 

specimens as shown in Figure 4.  The variation of a     was 

limited to the values specified in paragraph 1.3.2 of 

Section III.  The procedure used in the parametric study 
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consisted of using a linear elastic finite element analysis 

and varying 6 and 6 to minimize maximum axial stress a 

difference between any two elements inside the test section. 

This procedure was used for the following 

combinations of a, g and 6 under a constant thickness of one 

tabbing material system and a constant applied load. 

2.2.1 a 9t 0, 6 = 5 = 0 

This condition corresponds to the use of 

square ended tabs with fibers of tabs aligned along the 

longitudinal axis of the specimen.  The stress a    difference 

percentages obtained for this combination are tabulated in 

Table IV and stress differences are plotted in Figure 7. 

2.2.2 a ?t 0, B = a, 6 = 0 

To improve distribution of stresses in 

off-axis specimens. Pipes (References 9 and 10) suggested 

the use of square ended tabs with fibers of tabs aligned 

along the specimen fiber direction.  This design has been 

used ever since.  The stress difference percentages for this 

condition are also given in Table IV and stress differences 

are plotted in Figure 7. ■ 

2.2.3 a * 0, optimized 3,6=0 

This condition corresponds to the use of 

specimens with square ended tabs in which tab fiber 

directions are determined to produce minimum variations of 

the axial stress a^.     For this condition and for each 

off-axis angle, a , (listed in paragraphs 1.3.2 of Section 

III), the tab angle 6  was varied until the maximum stress 
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differences attained the minimum values.  The resulting 

stress difference percentages corresponding to optimum 

values of S for square tabs are given in Table IV, and 

stress differences rre plotted in Figure 7 . 

2.2.4  a^tO, 3^0, S^^a, S^^O 

This condition corresponds to the use of 

optimized orientation of tab fibers and tab ends.  In this 

case, for each of the values of a ,both 3 and 6 were varied 

to obtain the minimum stress o    differences.  The optimum a 

,3,6 and the corresponding stress difference percentages 

are tabulated in Table IV.  The axial stresses in various 

elements are given in Tables II and III.  This condition 

produced practically uniform axial stress states in all of 

the off-axis specimens. 

, ,-       Plots of stress differences for the square tab 

specimens for tab fiber orientations 3=0, 3 = a and 

optimized 3 for different off axis angle a are shown in 

Figure 7.  It is obvious from the plots that by making the 

tab fiber orientation the same as the off-axis angle (a = 3) 

a dramatic improvement over the 3=0 case in stress 

distribution was achieved.  However, the optimization of the 

tab fiber angle 3 although improving results for condition 

2.2.2, ( 3 = a) did not improve the results to the same 

extent as did condition 2.2.2 ( 3 = a) over condition 2.2.1 

( 3 = 0).  Results for the optimized 3 and 5 condition 2.2.4 

are not shown in Figure 7 since the ordinat'^ values were too 

small for the resulting plot to be distinguished from the 
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abscissa at most of the points, with the maximum value of 

stress difference being 4.7 psi. 

2.3  Effect of Material Nonlinearity on Tab Design 

It was observed in paragraph 2.2 of this Section that 

the stress field was practically uniform in an off-axis 

specimen with tabs designed for optimum combinations of tab 

fiber orientation (e) and tab inclination (6).  In this 

condition linear material behavior was assumed for both the 

specimens and the tabs.  However, off-axis specimens loaded 

to failure are known to exhibit nonlinear stress-strain 

response.  This raises a question about the validity of the 

tab design based upon linear material behavior.  To assess 

the effect of material nonlinearity on the tab design, two 

studies were conducted.  These studies consisted of 

nonlinear finite element analyses (finite element models as 

per Figure 5 and 6) of hinged ended off-axis specimens with 

tabs designed as per conditions 2.2.2 (g = a) and 2.2.4 

(optimized g and 6).  From each of the analyses, stress 

differences Aa  and load levels were determined.  Stress 

differences, stress difference percentages, and axial stress 

levels corresponding to the first and the next to the last 

increment are tabulated in Table X.  From the data of Table 

X, it is concluded that the effect of material nonlinearity 

on the tab design results in degrading the uniformity of 

stress a   ,   but the stress distribution corresponding to 

design condition 2.2.4 (optimized g and 6) is far more 

uniform than that for condition 2.2.2 (3 = a). 
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3.  Analytical - Experimental Correlation 

The experimental part of the effort was intended to 

evaluate tab designs for conditions 2.2.2 and 2.2.4 with 

rotating grips (hinged grips).  Unfortunately half of the 

specimens for condition 2.2.2 were tested with standard 

Instron grips instead of rotating grips.  The remaining 

specimens were split into two groups with square end and 

inclined tabs as originally intended and tested with rotat- 

ing grips.  The test data (Figures 14 thru 100) show a good 

deal of scatter.  To find the reason for the data scatter, 

actual off-axis angles were measured for the available 

failed specimens.  These angles are tabulated in Table XI. 

As can be seen from the table, the actual angles deviated 

considerably from the planned angles.  Accounting for these 

differences decreases the scatter somewhat.  The remaining 

scatter is probably due to material variability, but the 

possibility of technique related variability cannot be 

dismissed. 

Due to the scatter in the current data, no definite con- 

clusions about the improvements resulting from orienting the 

tab ends can be drawn.  But since the analytical results 

very strongly favor tab end orientation, it is only logical 

that the analytical indications should be verified with a 

new set of experiments.  Considering the data shown in Table 

X off-axis angles a for these experiments need not assume 

values greater than thirty degrees, because square end tabs 

cause the greatest non-uniformity of stress for 0  < a <. 

30°. 
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TABLE I 

OFF-AXIS ANGLE FDR MAXIMIZING SHEAR RESPONSE AND MINIMIZING TRANSVERSE RESPONSE-LINEAR ANALYSIS 

MATERIAL ^11 ^22 "12 ^11 ^22 a' a" 

xlO^psi xlO^psi ksi ksi 

**MOD-I/EPOXy 34.9 1.12 0.218 81.7    • 4.0 12°  28.5' 4° 47' 

BORON/EPOXY 30.8 2.59 0.24 197.8 :   ;    8.4 11°  40' 8° 5' 

GIASS/EPOXY 6.45 1.84 0.245 248. 10.0 11°   21' 14° 49' 

**T-300/5208 21.4 1.35 0.25 204.0 7.0 10°  30' 7° 10' 

*AS/3501-5 17.87 1.52 0.25 225.2 9.12 11°   23' 8° 18' 

*The material system used in this study 

**Reference 14 



TABLE II 

LONGITUDINAL STRESSES CJ IN OFF-AXIS SPECIMEN WITH ORIENTATION ANGLE a < 10° * 
X = 

ALPHft=        i».(5S99     e.Qocf     a.Qoaa    lo.oaos 

BETA   = 62.0000      56.flOC)b        5.50(16        6.00C0 

0€LTA= 0.0000        COOOO .1500 .1520 

ELEMENT   NO. CT^     STRESS PS I 

25 7392.8 7392.C 7392.2 7391.6 
26 7389.5 7390.6 7390.7 7390.9 
27 7390.6 7390.7 7391.0 739C.2 
28 7392.3 7392.0 7391.U 7392.4 
29 7390.2 73 91.1* 7391.*♦ 7392.0 
30 7392.1 7391.1 7391.2 7390.6 
31 7393.a 7391.'* 7391.5 739C.4 
32 7389.8 7391.3 7391.1 7392.2 
13 7390.0 7391.2 7391,2 7391.9 
3H 7392.6 7391.4 7391.4 7390.6 
35 7392.7 7391.5 7391.5 739C.9 
36 7389.9 7391.1 7391.1 7391.9 
37 73 90.9 7391.2 7391.2 7391.4 
38 7391.9 73 91. *♦ 7391.4 7391.r 
39 7391.7 7391.if 7391.4 7391.3 
hn 7390.8 7391.2 7391.2 7391.5 
k± 7391.3 7391.3 7391.3 7391.3 
kZ 7391.3 7391.3 7391.3 7391.3 
if3 7391.3 7391.3 7391.3 7391.3 
<Ht 7391.3 7391.3 7391.3 7391.3 
h5 7391.3 7391.3 7391.3 7391.3 
hk 7391.3 7391.3 7391.3 7391.3 
hi 7391.3 73 91.3 7391.3 7391.3 
h% 7391.3 7391.3 73 91.3 7391.3 

*Llnear Material and Finite Element Analyses 
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TABLE III 

LONGITUDINAL STRESSES O^  IN OFF-AXIS SPECIMEN WITH ORIENTATION ANGLE a > 12°   * 

ALPH4= 12.0080     1«».OOOC     16,0000      20.0000     30.00''0     itO.OOOC     ifS.OOOO      50.D000     63.0000     7C.0CCC     83.000C 

BETA   = 6.5000       7.5000 8.0000 9.0000     12.0000     16.0000     17.5000     19.0000     25.0000     30.0000     36.0000 

OELTa= .1600 16CC .1720 .19«»C .2552 .3030 .3235 .3379 .3176 .2510 .1120 

ELEMENT   NO. 0 
X STRESS   PSI 

25 7390.9 7389.9 7389.2 7388.7 7391,2 7390,0 7391.2 7392.1 7390.i» 7390.2 7391,3 
26 7391.1 7392.1 7392.3 7392.<» 7391.3 7391,9 7391.3 7390.0 7392.5 7393.1 7391,3 
27 7389.1 7390.7 7390.0 7390.2 7391.3 7391,5 7391.3 7391.3 7391.6 7391.8 7391.3 
28 7393.7 7392.2 7393.2 7393.3 7391.'* 7391,3 7391.3 7391.8 7393.7 7390.2 7391.'* 
29 7392.6 7391.6 7391,9 7391.6 7391.3 7391,0 7391,3 7391.5 7390.7 7390,6 7391.3 
30 7389.8 7390.9 7390,«» 7390.<t 7391.3 7391.4 7391,3 7391.0 7391.7 7391.9 7391,3 
31 7389.2 73 90.2 7389,U 7389.6 7391.3 7391.1 7391.3 7391.'* 7391.2 7391.'* 7391,3 
32 7393,5 7392.5 7393,'* 7393,'* 7391.3 7^91.6 7391.3 7391.it 7391.2 7391.1 7391,3 
33 7392.7 7392.0 7392.If 7392.3 7391,3 7391.U 7391.3 7391.3 7391.3 7391.2 7391,3 
3i» 7389.7 7390.5 7389,9 7390.0 7391,3 7391,2 7391.3 7391.fi 7391.3 7391.3 7391.3 
35 7390.2 739C.6 7390,3 7 390,5 7391.3 7391,2 7391,3 7391,<♦ 7391.3 7391.«. 7391.3    : 
36 7392.7 7392.1 7392.7 7392.6 7391.3 7391.5 7391,3 7391.2 7391.«» 7391.3 7391.3    ' 
37 7391.6 7391.<* 7391.'* 7391.3 7391.3 7J91.3 7391,3 7391.3 7391.3 7391.3 7391.3 
38 7390.7 7391.0 7390.8 7390,9 7391,3 7391.3 7391,3 7391.3 7391.3 7391.3 7391.3 
39 7391.3 7391.3 7391.«» 7391,<♦ 7391,3 7391.3 7391,3 7391.3 7391.3 7391.3 7391.3 
(»0 7391.7 7391.5 7391.7 7391.6 7391,3 7391.3 7391,3 7391.3 7391.3 7391,3 7391.3 
i»l 7391.2 7391.3 7391.2 7391.2 7391.3 7391.3 7391,3 7391.3 7391.3 7391.3 7391.3 
HZ 7391.«» 7391.«» 7391.<♦ 7391.<♦ 7391.3 7391,3 7391.3 7391.3 7391.3 7391.3 7391.3 
i»3 7391.1. 7391.ff 7391.U 7391,1* 7391,3 7391,3 7391.3 7391.3 7391.3 7391.3 7391.3 
HI* 7391.2 7391.3 7391.2 7391,2 7391,3 7391.3 7391,3 7391.3 7391.3 7391.3 7391.3 

*Linear Material and  Finite Element Analyses 



TABLE IV 

MAXIMUM STRESS DIFFERENCES (A) FOR LINEAR MATERIAL 

SPECIMEN 
FIBER 

PERCENTAGE OF MAXIMUM STRESS ; DIFFERENCE (A) 1 
i    SQUARE TABS 6= =0 INCLINED TABS 6=^0               1 

B=0 B=a B^a e?^a 
ORIEN- 
TATION 

a 
A % A % 3 A % B 6 A % 

4 0.5777 0.5006 62.0° 0.0474 62.0° 0. 0.0474 

6 0.7345 0.5547 56.0° 0.0189 56.0° 0. 0.0189 

8 0.9065 0.6224 50.0° 0.0866 5.5° 0.1500 0.0203 

10 1.1419 0.6954 45.5° 0.2043 6.0° 0.1520 0.0271 

12 1.4071 0.8023 41.0° 0.3301 6.5° 0.1600 0.0622 

14 1.7196 0.9444 36.5° 0.4979 7.5° 0.1600 0.0352 

16 2.0538 1.0959 34.0° 0.6765 8.0° 0.1720 0.0568 

20 2.7911 1.4206 33.5° 1.0783 9.0° 0.1940 0.0636 

30 4.7421 1.9604 36.5° 1.7669 12.0° 0.2552 0.0027 

40 6.6281 2.5395 32.0° 2.5016 16.0° 0.3030 0.0257 

45 6.7877 2.5422 35.0° 2.5422 17.5° 0.3235 0.0014 

50 5.9570 2.7505 48.5° 2.7451 19.0° 0.3379 0.0230 

60 3.9046 1.9780 55.0° 1.9009 25.0° 0,3176 0.0284 

70 1.8143 1.0350 58.5° 0.8402 30.0° 0.2510 0.0392 

80 0.6156 0.3572 43.0° 0.0988 36.0° 0.1120 .0014 
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TABLE V 

RESIN CONTENT AND DENSITY * 

Panel Subpanel Density Resin Percent Volume 

w/o Resin Fiber Voids 

A 4 1.590 32.9 41.1 59.9 -1.0 

(Figure 8) 
6 1.593 31.6 39.5 61.2 ■ -0.7 

. ,;   ■ 8 1.589 32.8 40.9 60.0 -0.9 

.  . 10 1.594 31.8 39.8 61.1 ■ -0.9 

12 1.585 33.0 41.1 59.6 -0.7 

B    ' 14 1.600 30.7 38.6 62.3 -0.9 

(Figure 9) 
16 1.598 31.4 39.3 61.6 -0.9 

20 1.599 30.7 38.6 62.3 -0.9 

30 1.598 31.2 39.1 61.8 -0.9 

. - 40 1.598 30.7 38.5 62.3 -0.8 

'   -■ ■ ■       .■  ■-■; 45 1.601 30.3 38.1 62.7 -0.8 

50 1.594 31.4 39.3 61.4 -0.7 

t      ■ 60 1.601 30.6 38.4 62.4 -0.8 

70 1.599 30.6 38.4 62.4 -0.8 

A 80 1.591 31.8 39.7 60.9 -0.7 

(Figure 8) 
; - 

* Assumed Resin Density = 1.2733 gm/cc and Fiber Density = 1.7798 gm/cc 
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TABLE VI 

UNIDIRECTIONAL MATERIAL PROPERTIES (STRESS-STRAIN DATA) 
AS/3501-5 GRAPHITE EPOXY 

0° TENSION 0° COMPRESSION 90° TENSION 90° COMPRESSION SHEAR 
2 SAMPLES/SECOND 2 SAMPLES/SECOND 4 SAMPLES/SECOND 2 SAMPLES/SECOND 2 SAMPLES/SECOND 

STRAIN STRESS     POTSSONS' STRAIN STRESS     POTSSONS' STRAIN     STRESS STRAIN     STRESS STRAIN     STRESS 
IN/IN KSI         RATIO IN/IN KSI         RATIO IN/IN     KSI IN/IN     KSI IN/IN     KSI 

0. 0.         .200 0. 0.         .300 0.           0. 0.           0. 0.           0. 
.0005 8.93      .281 .0005 10.02      .302 .0005      0.76 .001       1.65 .004       3.13 
.001 18.49      .306 .001 19.87      .308 .001       1.51 .002       3.24 .008       5.70 
.0015 28.11      .317 .0015 29.39      .313 .0015      2.26 .003       4.80 .012       7.67 
.002 37.91      .322 .002 38.62      .317 .002       3.01 .004       6.33 .016       9.13 
.0025 47.80      .324 .0025 47.73      .321 .0025      3.74 .005       7.87 .02       10.25 
.003 57.75      .325 .003 56.80      .325 .003       4.48 .006       9.41 .024      11.15 
.0035 67.87      .326 .0035 65.77      .329 .0035      5.20 .007      10.92 .028      11.86 
.004 78.00      .326 .004 74.66      .335 .004       5.90 .008      12.41 .032      12.45 
.0045 88.23      .326 .0045 83.56      .338 .0045      6.59 .009      13.88 .036      12.96 
.005 98.60      .326 .005 92.62      .342 .005       7.28 .01       15.32 .04       13.40 

.0055 108.95      .326 .0055 101.85      .346 .0055      7.96 .011      16.74 .042      13.58 

.006 119.40      .325 .0059 110.19      .349 . .0064      9.12 .012      18.13 .044      13.73 

.0065 129.90      .324 ♦ .00813 141.73      .368 .013      19.48 .046      13.90 

.007 140.40      .323 .014      20.82 .048      14.07 

.0075 150.89      .322 .015      22.17 .05       14.23 

.008 161.51      .320 .016      23.49 .052      14.36 

.0085 172.05      .319 .017      24.70 ..09247    15.27 

.009 182.69      .318 .018      25.88 

.0095 193.18      .316 '    '   " .0185     26.49 
..Oil 225.20      .312 ..03125    37.15 

- 

*UItiniate Stress-Strain Values 



TABLE VII 

,o ,„^o. 
(0 /90 ) MATERIAL PROPERTIES (STRESS-STRAIN DATA) 

Glass/Epoxy 

0/90 TENSION SHEAR 
n 

STRAIN STRESS POISSONS' STRAIN STRESS 
IN/IN KSI RATIO IN/IN KSI ♦ 

p. 0. 0.130 0. 0. 
. 'i 

0.001 4.14 i:     0.130 . :    .005 2.86 
. ■ 1 

1 

.002 8.12 0.129 ,01 4.47 

. 003 11.93 0.128 .015 5.44 . . 1 
1 

.004 15.50 0.122 .02 5.97 

.005 18.74 0.113 ■ .025 6.41 1 

.006 21.99 0.105 *   .03 6.69 
1 

.1 

.007 25.05 0.098 .035 6.90 

.008 28.18 0.093 ". „  , ■- ,  »04 ,  .   .       ^    : 7.05 

.009 31.30 0.088 )      '    -0^5 7.18 
■ 

.01 34.29 0.084 .05 7.29 ■ '■ 

■ 

.011 37.33 0.081 .055 7.40 

.012 40.38 * 0.078 .06 7.46 

.013 43.41 0.075 .065 7.59 . 

.014 46.42 0.071 i07 7.69 
■ 

.015 49.39 0.068 ,   .075 7.75 

.016 52.32 0.064 .08: 7.90 
■ 

0.17 55.18 0.059 .085 8.04 

0.18 58.00 0.054 .09 8.19 

.019 60.86 0.050 .15174 9.43 
•* 

.020 63.72 0.046 

.021 66.51 ". 0.041 ; ■' 

.022 69.30 0.038 

.023 72.09 0.034 

.02757 83.22 0.026 
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SYMBOL 

TABLE VIII 

ENGINEERING ELASTIC CONSTANTS 
AS/3501-5 GRAPHITE EPOXY 

DESCRIPTION ELASTIC 
CONSTANT 

COEFFICIENT 
OF 

VARIATION 

lit 

lie 

^22t 

^22c 

'12 

'12t 

12c 

lit 

lie 

22t 

22e 

Tensile Longitudinal Tangent Modulus of Elasticity 

Compressive Longitudinal Tangent Modulus of Elasticity 

Tensile Transverse Tangent Modulus of Elasticity 

Compressive Transverse Tangent Modulus of Elasticity 

Shear Tangent Modulus of Elasticity 

Major Tensile Poisson's Ratio 

Major Compressive Poisson's Ratio 

Tensile Longitudinal Strength 

Compressive Longitudinal Strength 

Tensile Transverse Strength 

Compressive Transverse Strength 

17.87 X 10^ psi 

20.05 X 10 psi 

1.52 X 10^ psi 

1.65 X 10 psi 

0.78 X 10^ psi 

0.2 

0.3 

225.20 ksi 

141.73 ksi 

9.12 ksi 

37.15 ksi 

8.4 

27.9 

12.0 

34.7 

2.4 

8.8 

3.7 

6.5 

5.0 



TABLE VIII (CON'T) 

ENGINEERING ELASTIC CONSTANTS 
(Graphite/Epoxy) 

SYMBOL DESCRIPTION 

12 

1(9 

lit 

lie 

22t 

22c 

12 

In-plane Shear Strength 

Tensile Ultimate Longitudinal Strain 

Compressive Ultimate Longitudinal Strain 

Tensile Ultimate Transverse Strain 

Compressive Ultimate Transverse Strain 

Ultimate Shear Strain 

ELASTIC COEFFICIENT 
CONSTANT OF 

VARIATION 

15.27 ksi 2.3 

.010995 7.5 

, .008131 19.3 

.006399 7.2 

.031248 17.2 

.09247 33.8 

..^-5 



TABLE  IX 

Ti^ST   NU»1'?£RS;fti<£AS;ULTIM»T£   STk£SSES   AND   STRAINS 

TPST 
A9E4 

ISi. 153 la? 1 = 1 150 MEAN     COV 2J9 257 256 H£AN     COV S29 330 331 332 333 HEAN     COV 
.01330   ,0f310   .0911.0   .09221   .0o210   .0621.2 .9   .08230   .0dG90   .03203   .08170        .9   .08220   .Oo350   .031.00   .08390   .a!l3E0   .Q83'.2 

<♦   SIGX        l^f.jl   126.21    112.12     6t. 16     9<.. b 1   10^.15   28.9   115.77   K.0.10   131.16   129.01     9.5   ItS.'iS   1^2.31   136.S".   132.21   115.73   13<».'.l     8.7 
FP3X        .0091.9   .00797    .naD7-.   ,00302  ,00605   .005e3   30.6   .00831   .OOoi.'.   ,00810   .00128     2,0   .00932   .00857   ,00675   .00830   .00680   .00835   11.3 
fPSY .D0327   .00263 .80206 .001'6 .0018/ ,00222   3'*.5 
FP^XY .02351   .0161,2 .0161)1 .00678 .01251 .01561   1.0,i, 
SIG? .71           .62 .55 .31 ,ki .f3   28.9           .56 
TAU12 10.20        8.92 7.80 i..i*6 6.60 7.60   26.9        6. 16 
f:PS12 .02505   .81972 .01787 .0I)7<.'. .0131.9 .01671   39.7   .02197 

00267   .00268   .00220   .00251   10.9 ,00331 .00271 .00307 .00297 ,00219  .00285 li«. 9 
02061.   ,01-.09   .01023   .01500   3<t.9 ,02387 . 0 22'«6 .02123 .02066 .01378   .0201,0 19.1 

.63     9.5 .71 .69 .66 .6'» ,56          ,65 8,7 
8.98     9.5 10.12 9.90 9.1.9 9.20 8.05        9.35 «.7 

.58 
9.75 

.01=50 

.61. 
9.13 

,01161 .01636   32.0   .025HO   .02381   .02267   .02202   .ai<»9a   .02176   18.6 

TPST 155 156 157 156 159 MtiAN COV 245 25 9 255 M'^AN COV 324 325 326 327 328 MEAN COV 
AP£A .09300 .09200 .091.00 .0921-0 .09213 .09270 .9 .09310 .09i0Q .0 9210 .09207 1.1 .09130 .39020 .09130 .09051 .09070 .09080 .5 

6   SIGX 107.3H 103.91 10-..75 102.25 98.21 103.1.0 3... 10-,. 33 121..35 119.71* 116.01. 9.2 113.76 101..72 105.35 107.01 107.17 107.60 3.3 
E°SX .00367 .00839 .00872 . 00916 .00731 .00339 3.5 .00761 .00o96 .00871. .00850 7.2 .00939 .00801* .00789 .00831 ,00861 .0081*5 7.0 
FPSY .0031S .00311 .00^13 • 0 0361 .00222 .00305 16.6 .00211 .00265 .00305 .00260 18.2 .Q033b .00310 .00316 .0031*2 .00326 ,00326 4.1 
EPSXY .02623 .02230 .021.3' .02290 .02326 .02382 o.i. .02833 .02oi.2 .02658 .02777 3.7 ,03330 .02'»3<. .02310 .02780 .02617 .02591* 1<>.S 
SIG? I.IC 1.11. 1.11. 1. 12 1.07 1.13 3.1. 1.11. 1.36 1,31 1.27 9.2 1,21. 1.11* 1.15 1.17 1.17 i.ie 3.3 
TAU12 11.21 10.BO 10.S9 10.63 13.21 10.75 3.k 10.81 12.93 12.1.5 12.06 9.2 11.83 10.89 10.95 11.12 It. 11* 11.19 3.3 
EPS12 .02612 . 021.20 .0253C .02505 .021.71. .02568 6.1 ,02977 -03021 .0281.5 .0291.8 3.1 .03522 .02612 .021*89 .02963 .02807 .02879 11*.0 

T^ST 160 161 162 163 loi. MFAN CO\l 21.2 251. 253 MEAN CO/ 320 321 322 323 HEAN COV 
AREA .09250 .09220 .09220 .09190 .09110 .09198 .6 .09210 . 09180 .09300 ,09230 .7 .09170 .09090 .09100 .09160 .09130 .1* 

*» 8   SIGX 87.70 87.1.5 88.35 60.1.5 82.76 8 5.31. 1..1 87.90 90.36 51..99 77.75 25.1. 88.23 32.13 89.50 77.71* 81*.1*0 6.5 
o> £PSX .00898 .00506 .00«i,0 . 00832 .01053 .00905 11.0 .00868 . 0031.8 .001.31. .00717 31*.2 .00361. .00790 .00952 .00683 .00822 13.9 

EPSY .00299 . 00253 .00391. . 00329 .00^33 .0031,2 2 0.5 .00335 .00291. ,00152 .00260 36.9 .001.10 .0031*6 .OOKli* .00287 .00361* 16.6 
tPSXY .02861 .03027 .031.62 .02561 .32936 .02969 11. 0 .026^2 ,02322 .00977 .0211*7 UT.h .03009 .02378 .02901 .01996 .02571 18.1* 
SIG2 1.70 1.69 1.71 1. 56 1.63 1,65 1..1 1.70 1.75 1.07 1.51 25.1. 1.71 1.59 1.73 1.51 1.63 5.5 
TA1J12 12.B9 12.05 12. 1« 11. 09 11.=.1 11.76 1..1 12.11 12,1.5 7.58 10.72 25.1. 12.16 11.32 12.33 10.71 11.63 6.3 
FPS12 .03077 .0320 3 .03696 ,02782 .03232 .03198 10.3 .02872 ,03027 .01100 .02333 1,5.9 .0321.3 .02599 .03165 .02186 .02798 17.8 

TEST 165 1D6 167 168 169 MEAN ccv 230 25 3 252 MEAN COV 316 317 318 319 HEAN COV 
APES .091.00 . 09320 .09390 .091.1.0 .091.10 .09392 .5 .09300 ,09260 .091.00 .09320 .8 .09290 .09290 .09290 .09230 .09275 .3 

f   SIGX 73.65 67,95 70.1.8 71.15 66.6 7 69.98 3.9 o3. 62 83.61. 88.12 78.1.6 16.6 1.9.03 66.87 61..83 69.53 62.57 11*. 7 
i^PSX .01107 .01016 .01229 .01072 . 00969 .01079 9.2 .01026 .01131 .01216 ,01121. 8.5 .OOii.2 .00962 .0091*3 .01080 .00882 26.6 
EPSY .03501. .001.31 .80559 .00531 .00'.95 .30510 11.2 .00506 .00397 .00533 ,001.79 15.0 .00272 . ao<*s6 .00'*'.', .00581 .001.1*6 29.0 
EPSXY .03801, .030^S .03556 .03899 . a3'.20 .0351.5 9.5 .03105 .03179 .03590 ,03291 7.9 .01325 .02757 .02712 .03199 .021.98 32.5 
S162 ?.22 2.05 2.13 2. 15 2.01 2.11 3.9 1.92 2.52 2.66 2,37 16.6 1.1.8 2.02 1.95 2.10 1.89 14.7 
TAJ12 12.59 11.62 12.05 12. 17 11.1.0 11.97 3.9 10.88 ii..30 15.07 13,<t2 16.6 8.38 11,'*'. 11.09 11.89 10.70 11*.7 
EPS12 .01.126 .03359 .03953 .01,212 .03711. .03875 6.9 .03'. 42 .03510 .03971 ,0361.1 7.9 .31523 ,03086 .03023 .03571* .02802 31.7 

12 SIGX 
FPSX 
EPSY 
EPSXY 
SIG2 
TAU12 
fPS12 

170 
.19310 
61.22 

.0101,5 

.00515 

.03045 
2.65 

12.1.5 
.031.17 

171            172           173 174 MEAN 
, 091.10 .09410 .09350 
61.11* 1,7.84 57.46 

.01149 . 00729 .01004 
, 00588 .00286 .00470 
• 031.34 .01912 .028 04 

2.54        2.64 2.07 
12.14      12.1.3 9.73 

,09310 .09>10 
57.36 59.70 

,03974 .01120 
.03..46 .00514 
.02717 .02514 

2.4fl 
11.67 
030ol   .03126   .03341.   .02163 

2.48 
11.68 

,03162 

COV 
.6 

9.7 
16.7 
24.3 
20. 1 
9.7 
9.7 

10.8 

231 
.091.20 
66.57 

.01026 

.004 53 

.03524 
2.45 

11.50 
.03821 

21*9 
. 09250 
73.68 

.01224 

.00=22 

. 03571 
3.18 

II..98 
. 03972 

260 
.09300 
52.54 

.0 3617 

.00240 

.01434 
2.27 

10.66 
.01658 

MEAN CCV 
.09123 .9 
60.93 IB.I. 

.00956 32.4 

.00405 36.3 

.02843 42.9 
2.63 16.4 

12.39 18.4 
.03151 41.1 

312 
.09240 
59.30 

. 30838 

.00463 

.02763 
2.56 

12. 06 
.33376 

313 314 
.09270   .09290 
61.16      56.70 

.01223   .00860 

.00495   .00399   .001*50 

.03533   .02572   .03072 
2.54        2.45 

12,44      11.53 
. 03927   .02862 

315 
.09210 
58.70 

.00939 

2.54 
11.94 

.03372 

HEAN 
.09252 
58.97 

.00978 

. 00453 

.02985 
2.55 

11.99 

COV 
.4 

3.1 
17.1 
8.9 

14.1 
3.1 
3.1 

,03309   14.0 



TABLE   IX   (CON'T) 

T'ST NUM3£<^s;«^::fts;uLTiMATt STRESSES AND STRAINS 

T^ST 17>; 176 177 178 179 MEAN cov 232 2H7 21,6 MEAN COV 289 29 0 291 MEAN COV 

A(»£A .09290 .052SO .09190 .09080 .09070 .09182 1.1 .09090 .0917 0 .09300 .09187 1.2 .J9010 .0 J25 0 .08990 .0908 3 1.6 

li*   SIGX 39.76 37.96 36.99 ^7.52 '.1.67 1-0.73 10.2 '♦H. 65 5o.97 51.£i* 51.15 11.9 -.9.1*7 50.85 52.71* 51.02 3.2 

E^SX .aobit .0056t .005'.7 .00837 .006H .00636 16.3 . 008 3-, .01276 .00961 .01021, 22.2 .00817 .00900 .00961 .00893 8.1 

fPSV .00257 .0026'^ .00220 . 00367 , 00276 .00283 22.1 .00391, .00656 .001,1,3 .001,97 28.0 .00 1,93 .001*96 .00667 .00553 17.9 

EPSXY .01^12 .01337 .01299 .0201,9 . 01500 .01529 19.6 .02171 . 035.* 0 .02532 .0271*8 25.8 .02066 .02531 .02579 .02392 11.8 

SIG2 2.^1 2,2? 2. 16 2.78 Z.".!, 2.39 10.2 2.62 3.33 3.02 2.99 11.9 2.90 2.98 3.09 2.99 3.2 

TAU13 9.33 fl.91 ».6'i 11.15 9.78 9.57 10.2 10.53 13.37 12.12 12.01 11.9 11.61 11.91. 12. 38 11.98 3.2 

tPS12 .01659 . 01611. .ni?07 .0238^ . 017-.-t .01781 19.5 .021,93 .01,033 .02891, .0311,0 25.1* .021.1*0 .02390 .030.*Z .02791 11.2 

TEST 135 136 187 IS"! 139 MEAN COV 233 26 9 263 MEAN COV 292 293 291. 295 MEAN GOV 

AREA .09270 .09170 .09150 .09060 . 08960 .09122 1.3 .09060 .09U9O .09110 .09087 .3 .0881,0 .09100 . 0901*0 .09070 .09013 1.3 

16   SIGX lif.ig 1.2.1^ 3<».25 1*1.13 38.72 38.08 9.8 38.1,5 50.1*5 51.1.0 1*6.77 15.1* 1*5.1.3 1*5.52 1*8.06 1*3.52 1*5.53 1..1 

?PSX .aoEita .00780 .00551 . 00797 .00717 .00677 18.3 .00705 .01223 .01179 .01036 27.7 .00916 .01053 . 0111*0 .00879 .00997 12.2 

E^sr .00229 .00330 .002<S . 00366 .00332 .00301 19.8 .0031,6 .00376 .00568 .oo^g? 26.3 .00455 .00568 .00710 .001*92 .00556 20.3 

£PSXY .01219 .01760 .01<t25 .01631 .01519 .01511 13.6 .01516 .03187 ,03120 .02608 36.3 .02371 .02713 .02951 .02219 .02563 12.9 

SIG? 2.60 3.20 2.60 3. 17 2.91. 2.89 9.8 2.92 3.83 3.91 3.55 15.1* 3.1,5 3..,6 3.65 3.31 3.1*7 i*.l 

TAU12 9.06 11.ID 9.07 10.90 10.26 10.09 9.6 10.19 13.37 13.62 12.39 15.1* 12.0., 12.06 12.73 11.53 12.09 1..1 

EPS12 .SIJ.!.! .02061 .01632 .01999 .0181.3 .01799 li,.6 .0181,3 .03a56 ,03572 .03021, 33.9 .02738 .03159 .031*83 .02608 .02997 13.1* 

TEST 190 191 192 193 19-, MEAN COV 231. 276 261* MEAN COV 296 297 298 MEAN COV 

AH'^.A .09320 .09200 .09100 .09000 .09010 .09126 1.5 • 09200 .09180 .09220 .09200 .2 .08860 .08970 . 09020 .06933 .9 

20   SIGX 30.05 38.80 37. Ji. 32.79 36.57 36.71 o.h 38.56 38.73 1,0.70 39.33 3.0 36.02 36.91* 31*.61 .,*• - 35.86 3.3 

4J- 
EPSX .91210 ,012',9 .01081 .00863 .flll9i» .01123 13.2 .01201, . 01275 .01260 .012<»6 3.0 .00966 .01312 .01280 .01186 16.1 

EPSY .00625 .aosru. .00512 .001,19 . 0063', .00573 18.3 .0051,2 . 00701, .00663 .00636 13.3 .00580 .00665 .001,79 .00575 16.2 

tPSXY .0?i.50 .02682 .02071 .01680 .0231,3 .022-,6 17.1 .0 25 06 .02656 .02895 .02686 7.3 .02081. .02691. .02282 .02353 13.2 

SIG2 "♦.".S i,.5k 4.37 3.8i< <».28 •,.29 6.1. 1..51 i,.53 1..76 i*.60 3.0 i*.21 1..32 1*. 05 i*.19 3.3 

T4U12 12.23 12.1.7 12.00 lfl.5<t 11.75 11.80 6.1* 12.39 12.1*5 13.08 12.61* 3.0 11.58 11.87 11.12 11.52 3.3 

EPS12 .03056 . 03291 .02611 .02121, .02973 .02811 16.2 .030t2 .03307 .031,51* .03268 6.1. .02590 .03331* .02879 .02931* 12.8 

TEST 195 196 197 198 199 MEAN COV 235 273 265 H£AN COV 299 300 301 MEAN COV 

AREA .09190 .0901,0 .09100 .09100 .09120 .09110 .6 .09220 .0910 0 .09100 .091<*0 .8 .08900 .0891*0 .08920 .03920 .2 

30   SIGX 25.18 23.97 26.98 26.51 26.30 Z5.79 i,.7 21,.28 26.23 28.69 26.1*7 8.7 3.63 22,12 11.81 11*.19 1*9.7 

EPSX .11371 .012bq .01657 .015 15 .01668 .01-,96 11.7 .01183 .01286 .011,29 .01299 9.5 .00228 ,00955 .00352 .00511 76.1 

fPSY .00705 .0 06 51 .00661 .OOSIO ,00852 .00776 12,0 .0 05 77 . OOoZi, .00933 .00711 27.2 .00108 ,00516 .00166 .00 26 3 83.9 

EPSXY .01757 .01535 .01680 .01883 ,01901 .01791 8.6 .011*51 . 01701* .03113 .02039 1,2.9 .00282 .01227 .001,26 .0061*5 78.9 

SIG2 6.30 5.99 6.75 6.63 6.58 6.1.5 tt.J 6. 07 6.56 7.22 6.62 8.7 2.16 5.53 2.95 3.55 (.9.7 

TAU12 10.90 10.38 11.68 11.ts 11.39 11.17 h.7 10.51 11.36 12.51 ll.<>6 8.7 3.71, 9.58 5.11 6.11* <»9.7 

EPS12 .02676 .021.31 .03121 .02955 .03133 .02863 10.6 .02250 .02500 .03603 .02786 25.8 .001*31 .01388 .00661 .00993 78.8 

TEST 
AP^A 

*0 SIGX 
EPSX 
FPSY 
EPSXY 
SIG2 
TAU12 
ePS12 

200 201 203 201* 202 
.08990  .08880   ,09080   .09100   .09060 

16.10     19.59      17.72      18.65     18.03 
.80C1.8   .01307   .0109-.   .01092  .01099 
.00380   .0061.9   .00390 

00853   .00S6-. 
7.32 
8.73 

.00762 
o. 65 
7.93 

.01-, 1.0 

.09 8. 
9.65 

I 0207, ,01612   .01691 

001.65   .001*11* 
00901.   . 00868 

7.1*7 
8.90 

0161*1* 

7.71 
9. 18 

MEAN 
.09022 
18.03 

,01108 
.001.60 
,00851* 

7.1.5 
8.83 

,0 1692 

COV 
1.0 
7.1 

11.6 
21*.1 
5.5 
7.1 
7.1 

13.3 

236 266 267 MEAN 
.09090   .09C0a   .09110   .09067 

18.51 
,01109 

13.33 
.0112H 

. 001*51*   . 00,72 

.00183   . 00777 
7. o5 
9.11 

. 01571 

7.57 
9.03 

,01706 

17.06 
.00915 
.00365 
.00681* 

7.05 
8.1.0 

COV 
.6 

I*.-, 

11.1 
17.97 

.0101*9 

.001*30 
,0051*3  53.3 

7.1,2     k.t 
6.85 

.01379   .01552 

303 
0901,0 
15.52 
00780 

13.3   .00358 
.00552 

6.1,1 
7.61* 

.01217 
i,.i* 

10.6 

30i. 
.09090 

18.53 
.01233 
. 00581 
.00381, 

7.66 
9.12 

305 
.03990 

16.88 
. 00921* 
.001,17 
.00677 

6.97 
8.31 

306 302 
.08990   .09110 
16.17      16.1,0 

.00859   .00915 

.00371 
.00668 

MEAN 
,0901*1* 
16.70 
0091*2 

.001*15   .001*26 

.011*01*   .00837 

. 0191*0   .011*38 

6.68 
7.96 

.01328 

6.78 
3.08 

6.90 
8,22 

.01553 ,011*95 

COV 
.6 

6.8 
18.3 
20.3 
1*0.5 
6.3 
6.3 

18.6 



TABLE IX (CON'T) 

T- ST NUM3EkS;fi5tSS!ULriM^T£ STRESSES AND STRAINS 
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TABLE  X 

STRESS   DIFFERENCES   FOR NONLINEAR ANALYSIS 

Off-Axis 

Angle 

SQUARF TABS* INCLIN: D TABS*                       1 

1st. Increment Last But One 
Increment 

1st. Increment Last But One 
Increment 

a '*" 
X 

Aa/* % "" Aa^ % 5 ^x Aa^ % °x A Ox % 

4° 18,360. 100. 0.5447 165,200. 600. 0.3632 0. 18,360. 10. 0.0545 165,215. 200. 0.1211 

6° 14,090. 80. 0.5678 140,900. 1,000. 0.7097 0. 14,089. 10. 0.0710 140,857. 300. 0.2130 

8° 10,870. 60. 0.5520 108,600. 700. 0.6446 0.1500 10,870. 10. 0.092 108,662. 100. 0.0920 

10° 9,130. 57. 0.6243 82,090. 930. 1.1329 0.1520 9,130. 13. 0.1424 82,159. 50. 0.0609 

12° 7,391. 54. 0.7306 73,800. 1,410. 1.9106 0.1600 7,391. 15. 0.2029 73,850. 140. 0.1896 

14° 6,521. 54. 0.8281 58,610. 1,260. 2.1498 0.1600 6,522. 13. 0.1993 58,691. 290. 0.4941 

16° 5,652. 54. 0.9554 56,390. 1,470. 2.6068 0.1720 5,652. 12. 0.2123 50,865. 350. 0.6881 

20° 4,782. 58. 1.2129 42,960. 1,720. 4.0037 0.1940 4,782. 12. 0.2509 43,035. 590. 1.3710 

30° 3,478. 135. 3.8815 28,025. 1,750. 6.2444 0.2552 3,478. 14. 0.4025 24,337. 650. 2.6708 

40° 2,174. 46. 2.1159 17,400. 930. 5.3448 0.3030 2,174. 14. 0.6440 17,389. 510. 2.9329 

45° 1,826. 41. 2.2453 16,440. 910. 5.5353 0.3235 1,826. 13. 0.7119 16,434. 480. 2.9208 

50° 1,565. 34. 2.1725 14,090. 560. 3.9744 0.3379 1,565. 9. 0.5751 14,086. 260. 1.8458 

60° 1,304. 31. 2.3773 11,740. 240. 2.0443 0.3176 1,304. 8. 0.6135 11,739. 10. 0.0852 

70° 1,043. 8. 1.8234 10,300. 80. 0.7767 0.2510 1,043. 4. 0.3835 9,389. 51. 0.5432 

80° 956.5 2.6 0.2718 9,382. 22. 0.2345 0.1120 956.5 2. 0.2091 8,607. 27. 0.3137 

*  Hinged  End  Conditions 

**  All  Stresses   in  psi 



NOMINAL 

ANGLE 

TABLE XI 

NOMINAL AND ACTUAL OFF-AXIS ANGLES 

STANDARD INSTRON 
GRIPS 

TEST // ACTUAL 
ANGLE 

ROTATING 
GRIPS 

TEST // ACTUAL 
ANGLE 

154 
153 
152 
151 
150 

155 
156 
157 
158 
159 

4.60 
4.90^ 
4.35^ 
4.82' 
4.93*^ 

6.40^^ 
6.47^ 
6.67^ 
6.35^^ 
6.42^ 

244 
257 
256 

245 
259 
255 

3.3 

7.08 
5.47' 
5.37' 

10^ 

160 
161 
162 
163 
164 

165 
166 
167 
168 
169 

8.55 
8.02' 
7.90' 
8.67' 
9.22' 

11.30' 
10.77' 
11.12' 
11.37' 
12.03' 

242 
254 
258 

230 
253 
252 

7. 
7. 
7.60' 

78' 
68' 

11.85 
8.67' 
9.35' 

12 

14' 

170 
171 
172 
173 
174 

175 
176 
177 
178 
179 

12.75 
12.97' 
13.02' 
12.95' 
13.27' 

14.00' 
13.98' 
14.07' 
13.47' 
13.43' 

231 
249 
250 

232 
247 
248 

10.65 
10.98' 

15.27 

16' 185 
186 
187 
188 
189 

15.80 

16.28 
16.25' 
16.18' 

233 
269 
263 

15.47 
15.57' 

20' 

47 

234 
276 19.90° 
264 19.92° 



* Negative as shown 

(a)  Unconstrained Boundary Conditions 

00 

(b)  Constrained Boundary Conditions 

Figure 1.  Deformation of Off-axis Specimen 
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Figure 4.  Off-axis Specimen 
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Load Direction in each Panel 

Figure 8.  Fabrication Schedule for Sub Panels for 
^,6,8, 10°, 12°, and 80° Off-axis 
Specimens 



* Load Direction in each Panel 

Figure 9. Fabrication Schedule for Sub Panels for 
14°, 16°, 20°, 30° 40°, 45°, 50°, 60°, 
70° Off-axis and 0 and 90° Tensile and 
Compresive Specimens 
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Figure 10.  0°, 90° and +45° Tension Test Spec imen 
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(YJ2) Curves for 4° Off-axis Specimens 
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Figure 17. Shear Stress (T12) versus Shear Strain 
(Y12) Curves for 6° Off-axis Specimens 
with Square Tabs and Fixed Grips 
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Figure 18.  Axial Stress^versus Axial, Transverse, and Shear Strain 
Curves for 8  (nominal) Off-axis Specimens with Square 
Tabs and Fixed Grips 
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Figure 19. Shear Stress (T12) versus Shear Strain 
(Y,,) Curves for 8° Off-axis Specimens 
with Square Tabs and Fixed Grips 
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Figure 21.  Shear Stress (T12) versus Shear Strain 
(7^2) Curves for 10° Off-axis Specimens 
with Square Tabs and Fixed Grips 
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Figure 26. Axial Stress versus Axial, Transverse, and Shear Strain 
Curves for 16 (nominal) Off-axis Specimens with Square 
Tabs and Fixed Grips 
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and Shear Strain Curves for 20° Off-axis 
Specimens with Square Tabs and Fixed 
Grips 

75 



is 
IS 

ro. 

ca  1 
=^  I 
CO_i 

(S) 

Q 193 

-;- 19] 

X 197 

A 193 

♦ 194 

EXPERIMENT 

ANALYSIS 

5.00 10. £10        15.00        20.0}^ 'i.m 

SHEHR STHRIN IN/IN <.10-^ 
.00    j',.'.00 

Figure 29.  Shear Stress (1^2^ versus Shear Strain (y     )  Curves for 
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(YJ^-) Curves for 30° Off-axis Specimens 
with Square Tabs and Fixed Grips 

78 



IS 

0.00 

A    .   + 

o 200 

+ 201 

X 202 

A 203 

O 204 

EXPERIMENT 

ANALYSIS 

2.00 4.00 6.00        8.00 10.00       12.00       14.00 
STRAIN  IN/IN ^10-^ 

Figure 32.  Axial Stress versus Axial, Transverse, 
and Shear Strain Curves for 40° Off-axis 
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Figure 37.  Shear Stress (t^p versus Shear Strain (YIO^ Curves for 
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Figure 38.  Axial Stress versus Axial, Transverse, 
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Figure 43. Axial Stress versus Axial, Transverse, and Shear Stain 
Curves for 4 (nominal) Off-axis Specimens with Square 
Tabs and Hinged Grips 
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Figure 46.  Shear Stress (^12^ versus Shear Strain (Y12) Curves for 6° Off-axis 
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Figure 47. Axial Stress versus Axial, Transverse and Shear Strain 
Curves for 8 (nominal) Off-axis Specimens with Square 
Tabs and Hinged Grips 
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Figure 48.  Shear Stress (TJ2) versus Shear Strain (YI2^ Curves for 8° Off-axis 
Specimens with Square Tabs and Hinged Grips 
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Figure 49.  Axial Stress versus Axial, Transverse and Shear Strain 
Curves for 10  (nominal) Off-axis Specimens with Square 
Tabs and Hinged Grips 
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Figure 50.  Shear Stress (1:^2^  versus Shear Strain (Y12) Curves for 10° Off-axis 
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Figure 52.  Shear Stress (T12) versus Shear Strain (Y12) Curves for 12° Off-axiq 
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Figure 54.  Shear Stress (T12) versus Shear Strain (Y12) Curves for 14° Off-axisj 
Specimens with Square Tabs and Hinged Grips 
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Figure 55.  Axial Stress versus Axial, Transverse and Shear Strain 
Curves for 16  (nominal) Off-axis Specimens with Square 
Tabs and Hinged Grips 
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Figure 56.  Shear Stress (T12) versus Shear Strain (Y12) Curves for 16° Off-axis 
Specimens with Square Tabs and Hinged Grips 
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Figure 57.  Axial Stress versus Axial, Transverse and Shear Strain Curves for 
20° Off-axis Specimens with Square Tabs and Hinged Grips 
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Figure 58.  Shear Stress (T12) versus Shear Strain (Y12) Curves for 20° Off-axis 
Specimens with Square Tabs and Hinged Grips 
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Figure 59.  Axial Stress versus Axial, Transverse and Shear Strain Curves for 
30° Off-axis Specimens with Square Tabs and Hinged Grips 
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Figure 60.     Shear  Stress   (^^2)  versus Shear  Strain   (Y12)   Curves  for 30°  Off-axis 
Specimens with Square Tabs and Hinged Grips 
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Figure 61,  Axial Stress versus Axial, Transverse and Shear Strain Curves for 
40° Off-axis Specimens with Square Tabs and Hinged Grips 
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Figure 62.  Shear Stress (T12) versus Shear Strain (Y12) Curves for 40° Off- 
axis Specimens with Square Tabs and Hinged Grips 
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Figure 63.  Axial Stress versus Axial, Transverse and Shear Strain Curves for 
45 Off-axis Specimens with Square Tabs and Hinged Grips 
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Figure 64.  Shear Stress (TI2) versus Shear Strain (Y12) Curves for 45° Off-axis 
Specimens with Square Tabs and Hinged Grips 
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Figure 65.  A^ial Stress versus Axial, Transverse, and Shear Strain Curves for 
50° Off-axis Specimens with Square Tabs and Hinged Grips 
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Figure 66.  Shear Stress (T^2^  versus Shear Strain (y,^)   Curves for 50° Off-axis 
Specimens with Square Tabs and Hinged Grips 
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Axial Stress versus Axial, Transverse, and Shear Strain Curves for 
60° Off-axis Specimens with Square Tabs and Hindged Grips 
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Figure 68.  Shear Stress (^,2) versus Shear Strain (Y12) Curves for 60?" Off-axis 
Specimens with Square Tabs and Hinged Grips 
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Figure 69.  Axial Stress versus Axial, Transverse, and Shear Strain Curves for 
70° Off-axis Specimens with Square Tabs and Hinged Grips 
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Figure 70.  Shear Stress (112) versus Shear Strain (Y12) Curves for 70° Off-axis 
Specimens with Square Tabs and Hinged Grips 
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Figure 71.  Axial Stress versus Axial, Transverse, and Shear Strain Curves for 
80 Off-axis Specimens with Square Tabs and Hinged Grips 
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Figure 73.  Shear Stress (T12) versus Shear Strain (Y12) Curves for 4° Off-axis 
Specimens with Inclined Tabs and Hinged Grips 
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Figure 74. Axial Stress versus Axial, Tranverse, and Shear Strain 
Curves for 6° (nominal) Off-axis Specimens with Inclined 
Tabs and Hinged Grips 
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Figure 75.  Shear Stress (T12) versus Shear Strain CYIO) Curves for 6° Off-axis 
Specimens with Inclined Tabs and Hinged Grips 
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Axial Stress versus Axial, Transverse, and Shear Strain 
Curves for 8° (nominal) Off-axis Specimens with Inclined 
Tabs and Hinged Grips 
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Figure 77.  Shear Stress (T]^2) versus Shear Strain (Y12) Curves for 8° Off-axis 
Specimens with Inclined Tabs and Hinged Grips 
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Figure 78.  Axial Stress versus Axial, Transverse, and Shear Strain 
Curves for 10  (nominal) Off-axis Specimens with Inclined 
Tabs and Hinged Grips 
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Figure 79. Shear Stress (T22) versus Shear Strain (Y12) Curves for 10° Off- 
axis Specimens with Inclined Tabs and Hinged Grips 
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Figure 80.  Axial Stress versus Axial, Transverse, and Shear Strain 
Curves for 12° (nominal) Off-axis Specimens with Inclined 
Tabs and Hinged Grips 
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Figure 81.  Shear Stress (T12) versus Shear Strain (Y12) Curves for 12° Off-axis 
Specunens with Inclined Tabs and Hinged Grips 
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Axial Stress versus Axial, Transverse, and Shear Strain 
Curves for 14° (nominal) Off-axis Specimens with Inclined 
Tabs and Hinged Grips 
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Figure 83.  Shear Stress (iin)  versus Shear Strain (YIO^ Curves for 14° Off-axis 
Specimens with Inclined Tabs and Hinged Grips 
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Figure  84. Axial Stress versus Axial, Transverse, and Shear Strain 
Curves for 16  (nominal) Off-axis Specimens with Inclined 
Tabs and Hinged Grips 
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Figure 85.  Shear Stress (T12) versus Shear Strain (Y12) Curves for 16° Off-axis 
Specimens with Inclined Tabs and Hinged Grips 
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Figure 86.  Axial Stress versus Axial, Transverse, and Shear Strain Curves for 
20° Off-axis Specimens with Inclined Tabs and Hinged Grips 
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Figure 87.  Shear Stress (TJ^2) versus Shear Strain CY12) Curves for 20° Off-axis 
Specimens with Inclined Tabs and Hinged Grips 
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Figure 88. 
t^o^iJ^''^^^ r""^ ^^^^'   Transverse, and Shear Strain Curves for 
JU Off-axxs Specimens with Inclined Tabs and Hinged Grips 
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Figure 90.  Axial Stress versus Axial, Transverse, and Shear Strain Curves for 
40° Off-axis Specimens with Inclined Tabs and Hinged Grips 
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Figure 91.  Shear Stress (T.„) versus Shear Strain (YIO^ Curves for 
40° Off-axis Specimens with Inclined Tabs and Hinged Grips 
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Figure 92.  Axial Stress versus Axial, Transverse, and Shear Strain Curves for 
45  Off-axis Specimens with Inclined Tabs and Hinged Grips 

139 



IS 

4.00 B.00 12.00        16.00       20.00 
SHEAR  STRAIN   IN/IN  ^^0' 

EXPERIMENT 

ANALYSIS 

24.00 I'B.m 

Figure 93. Shear Stress (T12) versus Shear Strain (Y^O^ Curves for 45^ 
Off-axis Specimens with Inclined Tabs and Hinged Grips 
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Figure 94.  Axial Stress versus Axial, Transverse, and Shear Strain Curves 
for 50° Off-axis Specimens with Inclined Tabs and Hinged Grips 
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Figure 95.  Shear Stress (TJ2) versus Shear Strain (Y12) Curves for 50° 
Off-axis Specimens with Inclined Tabs and Hinged Grips 
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Figure 96.  Axial Stress versus Axial, Transverse, and Shear Strain Curves 
for 60  Off-axis Specimens with Inclined Tabs and Hinged Grips 
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Figure 97.  Shear Stress (T12) versus Shear Strain (Y12) Curves for 60 
Off-axis Specimens with Inclined Tabs and Hinged Grips 
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Figure 98.  Axial Stress versus Axial, Transverse, and Shear Strain Curves 
for 70 Off-axis Specimens with Inclined Tabs and Hinged Grips 
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Figure 99.  Shear Stress (1^2^ versus Shear Strain (Y12) Curves for 70' 
Off-axis Specimens with Inclined Tabs and Hinged Grips 
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Figure 100.  Axial Stress versus Axial, Transverse, and Shear Strain Curves 
for 80° Off-axis Specimens with Inclined Tabs and Hinged Grips 
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